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Abstract

The eigenvalue problem of the operator a + (at is solved for arbitrary complex { by
applying a nonunitary operator to the vacuum state. This nonunitary approach is compared
with the unitary approach leading for |[{| < 1 to squeezed coherent states.

1 Introduction

The eigenvalue problem to linear combinations of boson operators in the standardized form a+¢ af
can be solved with squeezed coherent states only in the case |(| < 1 when it is equivalent to the
eigenvalue problem of an operator na-{—pat under the condition |x|*~|u|? = 1 with the substitution
¢ = &, (¢, &, 4 arbitrary complex numbers) [1]. This corresponds to the unitary approach because
the squeezed coherent states can be obtained by applying unitary squeezing operators to coherent
states [2]. However, this eigenvalue problem can also be solved for arbitrary complex ¢ with a
nonunitary approach providing in the limiting case { — oo even the solution of the eigenvalue
problem for the boson creation operator al. The corresponding eigenstates are not normalizable
for |(| 2 1 and are not states of the usual Hilbert space H (Fock space) in this case but they are
states of a rigged Hilbert space K’ in Gelfand triplets of spaces K C H C K' [3]. Such states
that do not give finite expectation values for relevant operators as, for example, for the number
operator could be, therefore, considered as pathological ones. However, they play an important
auxiliary role for the formulation of a new kind of orthogonality and completeness relations on
paths through the complex plane of eigenvalues, where at once two dual states belonging to the
parameters ( and (' = (1—. or(¢"™ =1 are involved [1].

2 Nonunitary approach to the eigenvalue problem

The solution of the eigenvalue problem

(a+ ¢ah)la;¢ >= ala; ¢ >, (1)



can be represented in the number-state basis |n > in the following nonnormalized form

o £ o () () oo

o0 [n/3] k
Z a® (=1)*n! ¢
TS VAl Z, ki(n — 2K)! (2a=) In > )

or by derivatives of a Gaussian function in the form

it >= e (37) S o g o (-5) > ®

Substituting in (2) the number states by the generation from the vacuum state, one obtains by
means of the generating function of the Hermite polynomials H,(z)

lo; ¢ >=exp ((.m'f - %ah) 0>. (4)
Two special cases are easily obtained from these formula, the coherent states |a; 0 >
= a" aa*
a;0 >= —in>=ex a >, 5
0 >= 3 Zo >z exp () | )

and the squeezed vacuum states [0; { >

¢ >= Y BB = gmiem > )

The nonunitary operator exp (aaT - %ah) does not preserve the normalization of the states. The
corresponding normalized states

2a0" = (" +Ca‘2)} e ¢ >, %

105 ¢ >norm= (1 = (¢)¥ exp {” 11— ¢C)

are only possible for |{| < 1.

The expectation values of the canonical operators

Qe) = \/g(ae"’ +alem), P(y) = —i\/g(ae"” —ale), ()
denoted by cross-lines are

— 01 _ /fre—i2¢ . =t _ 2¢
Q(‘p)=\/§'ae (1—=¢"e 1)-—+Czt.e: (1 Ce’),
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(7] - —|2¢ - -1 12¢
P(‘P)__t\/;ae (14 e 1)_sz_e (1+¢e) ©)

and their variances are

- ci?w - -c-.'zu
(A_QW=E(1 (e?)(1 - ("e™™)

- (¢ '
—_ (y 7 - —129
The uncertainty product
2-2‘ (Ceﬂcp - (oe-t'%)Q}

@aGr aPey = 5 {1 - L= e )

is the minimal possible one for 4 angles .,: according to
- 2
oer = £, B BPwa) = (12)
corresponding to the extreme values of the variances
hl:FICI AP LKl

One has pure amplitude (phase) squeezing if the minimal (maximal) value of (AQ(pest))? cor-
responds to P(pezt) = 0. This leads to the following coordinate-invariant conditions for the
arguments of the Hermite polynomials in (2):

a
1. amplitude squeezing, —= real numbers,
v2({
. a .
2. phase squeezing, ﬁ imaginary numbers.

a .
In the more general case, ——\/2_(—-— is a complex number. The expectation value of the number operator

is

- _ [a—(Ca" o - (ta (¢
N‘(l—cc-)(l—cc-)+1—cc-' (14)
and its variance
(L4 ()= 2¢a") (14 ((")a = 2"a) . XC°
(ANY: = 1= CC) *O= (15)

The nonunitary approach provides a new convenient parametrization of the squeezed coherent
states.
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3 TUnitary approach to the eigenvalue problem

The unitary squeezing operators
. e Va_plote i ioat 4o
S¢,n=n"¢)=exp £§a -¢ 50 +u)§(aa +ala) (16)
transform the basis operators a and at according to

S(Em €)@, aN)SEn €)' = (a, a*)(:’ )

. she .she
k=che—in—,p={—,€= VIER — 3, & — |uf? = 1. (17)

The solution of the eigenvalue problem of the operator a + (at is obtained by the following
application of the unitary squeezing operators to coherent states |y >

=prlet GahsEne) —= >= (ret waS(E . >
eXa eXa
= —0U5S(£,9,8") | —— 18
T (eﬂf)\/l—_l—clz> (18)
where x is an arbitrary angle and £ and 7 are given by
_emx(* _ __siny
E - Woaﬂ - 1 — C 201
R el (4 [¢|? - sin x
0= 77 = sin’xArSh TR (19)
By choosing x = 0 one finds :
. _ (-a - (QOZ
|0',C > norm= €XP {— 4(1 — Iclg) }
. _l__ l(l . 2 t2 o
exp {2|C|Arsh (——m) (c o —(a )} wirrike (20)

The unitary approach is restricted to |{| < 1.
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4 Dual states and eigenstates of the creation operator

are left eigenstates to the operator a + ¢ ot according to

The states < ZL:; (l.

ﬁc 1 1’ ﬂ.
<—=—;=—l(a+¢a')= <—— (21)
e fere) =<
and they are dual to the states |a;{ > in the sense of the orthogonality relation
- 2 .
< it ¢ o= varcens (57) 8- 5), (22)
e 2(
and of the completeness relation
=1. 23
27' /daexp( 2C)|a C>< (. C' (23)
The integration path C through the complex plane is widely arbitrary with the only restriction

that it it must begin in one sector and end in the other sector where exp (-— ;—:) vanishes in the

infinity for fixed values of (.
The eigenstates of the creation operator af according to

al|f;00 >= BlB; 00 > (24)
are 5
oo >= exp (ot ) 6800 >= 3 S oo > (29

where () is the one-dimensional delta function of complex argument (analytic functional). They
are orthogonal to the coherent states |a;0 >

< a*;0|8; 00 >= §(a - B). (26)

This relation shows also that the coherent states are already complete on paths through the
complex plane.
More details and references can be found in {1].
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